Forgot your password?
typodupeerror
IBM Security Wireless Networking

IBM To Unveil Secure Open Wireless At Black Hat 91

Posted by CmdrTaco
from the does-it-pass-the-sniff-test dept.
Trailrunner7 writes "Researchers from IBM's ISS X-Force plan to unveil a new system for running an open wireless network in a secure mode at the Black Hat conference here this week. The system mimics the way that Web sites browsers use digital certificates to establish a trusted connection with one another. X-Force researchers have been working on the system for a while now and the company plans to demonstrate the technology on Thursday during the conference. One of the main problems with public wireless networks is that they're susceptible to a number of simple attacks, including passive sniffing and man-in-the-middle. The X-Force system is designed to get around these problems by using a digital certificate to assure users that they are communicating with the wireless hotspot that they think they are."
This discussion has been archived. No new comments can be posted.

IBM To Unveil Secure Open Wireless At Black Hat

Comments Filter:
  • So how do I know... (Score:4, Interesting)

    by camperdave (969942) on Wednesday August 03, 2011 @12:50PM (#36974230) Journal

    One of the main problems with public wireless networks is that they're susceptible to a number of simple attacks, including passive sniffing and man-in-the-middle. The X-Force system is designed to get around these problems by using a digital certificate to assure users that they are communicating with the wireless hotspot that they think they are.

    So... How do I get the digital certificate of the wireless hotspot that I think I'm communicating with? How do I even know which hotspot I am communicating with?

  • by Desler (1608317) on Wednesday August 03, 2011 @12:57PM (#36974322)

    Which defeats the whole point of it being "open" wireless. Yes, if you make the hotspot private it can't be accessed by the public. Wow, you're sooo smart! Except that the point if this is to make it open and public.

  • by DrgnDancer (137700) on Wednesday August 03, 2011 @01:05PM (#36974416) Homepage

    The idea here is that you can have an open, public, wireless system that is not vulnerable to sniffers or MITM attacks. It's not for keeping your private wireless secure. As it stands right now, when I use the wireless in Starbucks I need to be careful. I need to make sure that all connections are HTTPS, or otherwise encrypted less I inadvertently give username or password information to anyone sniffing packets on the air; or setting up a rogue access point claiming to be Starbucks, but really on someone's laptop. With this technology you have a signed digital certificate and an encrypted connection. The one protects against rogue access points or MITM attacks, the latter again sniffers.

    It's a clever use of a known paradigm (chain of trust) to protect something that hasn't previously been very safe. The trick will be adoption, and setting up a chain of trust. I imagine the existing CAs could issue the certificates to handle the chin of trust issues, but adoption will require some cooperation from industry. Hardware and software vendors will have to create WAPs and clients to use this tech; and companies like Starbucks and even mom and pop cafes will have to invest in the new WAPs and deploy them.

  • by grimmjeeper (2301232) on Wednesday August 03, 2011 @01:30PM (#36974664)

    True story. I was working on some avionics systems back in the day and there was a team running a test on a transponder in a Faraday cage in the lab. For some reason they were picking up clear transmissions from a digital radar system. Sure enough, the team on the other side of the lab was running some tests inside their own Faraday cage. Come to find out that the two cages had a common ground so they ended up transmitting between each other. If you tap into the cage ground, the cage becomes a perfect antenna. So I wonder if a Faraday cage can truly make a wireless network completely secure.

    As an alternative, you could implement an additive cipher using a sufficient length one-time-use key made from truly random data each time you send a packet. I seem to remember that encryption like that was mathematically proven to be uncrackable. It's been many years since I worked on encryption systems so my memory has faded so please feel free to correct me if I have that wrong. The trouble with implementing that system though is how cumbersome it is to exchange the keys. You certainly can't do it over the network you're using. While systems like that are alright for certain applications, the key handling makes it impractical for a general purpose network. Then again, a Faraday cage makes the network less than useful too.

"Well hello there Charlie Brown, you blockhead." -- Lucy Van Pelt

Working...